293 research outputs found

    Boundary Partitions in Trees and Dimers

    Full text link
    Given a finite planar graph, a grove is a spanning forest in which every component tree contains one or more of a specified set of vertices (called nodes) on the outer face. For the uniform measure on groves, we compute the probabilities of the different possible node connections in a grove. These probabilities only depend on boundary measurements of the graph and not on the actual graph structure, i.e., the probabilities can be expressed as functions of the pairwise electrical resistances between the nodes, or equivalently, as functions of the Dirichlet-to-Neumann operator (or response matrix) on the nodes. These formulae can be likened to generalizations (for spanning forests) of Cardy's percolation crossing probabilities, and generalize Kirchhoff's formula for the electrical resistance. Remarkably, when appropriately normalized, the connection probabilities are in fact integer-coefficient polynomials in the matrix entries, where the coefficients have a natural algebraic interpretation and can be computed combinatorially. A similar phenomenon holds in the so-called double-dimer model: connection probabilities of boundary nodes are polynomial functions of certain boundary measurements, and as formal polynomials, they are specializations of the grove polynomials. Upon taking scaling limits, we show that the double-dimer connection probabilities coincide with those of the contour lines in the Gaussian free field with certain natural boundary conditions. These results have direct application to connection probabilities for multiple-strand SLE_2, SLE_8, and SLE_4.Comment: 46 pages, 12 figures. v4 has additional diagrams and other minor change

    Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs

    Full text link
    We show how to compute the probabilities of various connection topologies for uniformly random spanning trees on graphs embedded in surfaces. As an application, we show how to compute the "intensity" of the loop-erased random walk in Z2{\mathbb Z}^2, that is, the probability that the walk from (0,0) to infinity passes through a given vertex or edge. For example, the probability that it passes through (1,0) is 5/16; this confirms a conjecture from 1994 about the stationary sandpile density on Z2{\mathbb Z}^2. We do the analogous computation for the triangular lattice, honeycomb lattice and ZΓ—R{\mathbb Z} \times {\mathbb R}, for which the probabilities are 5/18, 13/36, and 1/4βˆ’1/Ο€21/4-1/\pi^2 respectively.Comment: 45 pages, many figures. v2 has an expanded introduction, a revised section on the LERW intensity, and an expanded appendix on the annular matri

    On the asymptotics of dimers on tori

    Full text link
    We study asymptotics of the dimer model on large toric graphs. Let L\mathbb L be a weighted Z2\mathbb{Z}^2-periodic planar graph, and let Z2E\mathbb{Z}^2 E be a large-index sublattice of Z2\mathbb{Z}^2. For L\mathbb L bipartite we show that the dimer partition function on the quotient L/(Z2E)\mathbb{L}/(\mathbb{Z}^2 E) has the asymptotic expansion exp⁑[Af0+fsc+o(1)]\exp[A f_0 + \text{fsc} + o(1)], where AA is the area of L/(Z2E)\mathbb{L}/(\mathbb{Z}^2 E), f0f_0 is the free energy density in the bulk, and fsc\text{fsc} is a finite-size correction term depending only on the conformal shape of the domain together with some parity-type information. Assuming a conjectural condition on the zero locus of the dimer characteristic polynomial, we show that an analogous expansion holds for L\mathbb{L} non-bipartite. The functional form of the finite-size correction differs between the two classes, but is universal within each class. Our calculations yield new information concerning the distribution of the number of loops winding around the torus in the associated double-dimer models.Comment: 48 pages, 18 figure

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1

    Psychological Factors Relevant to the Prehospital and In-hospital Phases of Acute Myocardial Infarction

    Get PDF
    Recognition and treatment of psychological factors relevant to the acute prehospital and in-hospital phases of myocardial infarction (Ml) are reviewed. Various emotions and personality characteristics can be both risk factors for and consequences of acute Ml. Components of the Type A behavior pattern and levels of somatic and emotional awareness have been linked with excessive treatment-seeking delay for Ml patients. Psychiatric conditions such as panic disorder may mimic symptomatic presentation of Ml and therefore have implications for differential diagnosis in the emergency room. Additionally. anxiety, depression, and neurobehavioral disorders such as delirium are relatively common during the hospitalization period and may contribute to potentially lethal complications of Ml. Because psychological factors are associated with prognosis during each phase of Ml, the identification and treatment of such factors are crucial in providing comprehensive care for MI patients
    • …
    corecore